Clay-polymer Interactions: Summary and Perspectives

نویسنده

  • B. K. G. THENG
چکیده

-The adsorption of uncharged polymers by clays is largely "entropy-driven." Polymer conformation changes from a random coil in solution to an extended form at the surface in which adsorbed polymer segments or trains alternate with loops and tails extending away from the surface. Although the net interaction energy, e, per segment-surface contact is small (--1 kT unit), the total energy of adsorption is large because the fraction of train segments, p, is commonly between 0.3 and 0.5. The adsorption isotherms are typically of the high-affinity type, and there is an apparent lack of desorption on dilution. Positively charged polymers (polycations) are adsorbed largely through electrostatic interactions between the cationic groups of the polymer and the negatively charged sites at the clay surface. Here e >> 1 kT unit and p > 0.7, leading to an almost complete collapse of the polymer chain onto the surface. Indeed, beyond a given level of adsorption charge reversal can occur in that the clay-polycation system effectively behaves as an anion exchanger. Little adsorption occurs with negatively charged polymers (polyanions) due to initial charge repulsion between the polymer and the clay surface. Acid pH, a high ionic strength, and the presence of polyvalent cations in the system enhance and promote polyanion adsorption. Uncharged polymers and polycations can enter the interlayer space of expanding 2:1 type layer silicates but polyanions generally fail to intercalate. The interactions of clays with biopolymers, such as proteins, nucleic acids, and polysaccharides, can be rationalized in similar terms. When intercalation occurs, the interlayer biopolymer is further stabilized against microbial (enzymatic) degradation giving rise to practical applications of clay-polymer complexes as flocculants and soil conditioners. Polyanions are effective as flocculants because of their large "grappling distance," whereas uncharged polymers are better suited as soil conditioners because they can spread over adjacent clay/soil particle surfaces like a coat of paint. Key Words--Adsorption, Anion exchange, Flocculants, Montmorillonite, Polyanion, Polymer, Soil conditioner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites

Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were us...

متن کامل

Supercritical Carbon Dioxide Processing Of Nano - Clays And Polymer/clay Nanocomposites

SUPERCRITICAL CARBON DIOXIDE PROCESSING OF NANO CLAYS ANDPOLYMER/CLAY NANOCOMPOSITESbyMIHAI MANITIUAugust 2010Advisor: Rangaramanujam KannanCo-Advisor: Esin GulariMajor: Chemical EngineeringDegree: Doctor of Philosophy Effective dispersion of the fillers in a polymer matrix and improvement of polymer clayinteractions are two key challenges in the field of...

متن کامل

Nonlinear dynamics of confined polymer melts with attractive walls.

A scaling model is presented to analyze the reversible strain-hardening phenomenon in end-tethered polymer clay nanocomposites (Krishnamoorti, R.; Giannelis, E. P. Langmuir 2001, 17, 1448). It is assumed that for attractive clay-polymer interactions a fraction of the polymer chains that span the space between opposite clay plates get adsorbed on them, thereby bridging the plates. Under large am...

متن کامل

Chemically Specific Multiscale Modeling of Clay–Polymer Nanocomposites Reveals Intercalation Dynamics, Tactoid Self-Assembly and Emergent Materials Properties

A quantitative description is presented of the dynamical process of polymer intercalation into clay tactoids and the ensuing aggregation of polymer-entangled tactoids into larger structures, obtaining various characteristics of these nanocomposites, including clay-layer spacings, out-of-plane clay-sheet bending energies, X-ray diffractograms, and materials properties. This model of clay-polymer...

متن کامل

Design and characterization of biodegradable polymer-clay nanocomposites prepared by solution mixing technique

This paper discusses about preparation of biodegradable polymer /clay nanocomposites based on organically modified montmorillonite clay; i.e. cloisite 10A and biodegradable polymer chitosan by solution mixing technique and their characterization. The nanocomposites were successfully prepared and their structures were characterized by powder x-ray diffraction (XRD), particle size analyzer (Beckm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006